STEAM UNIT HEATERS

- Steam pressures to 200 psi
- Steam temperatures to 600°F.
- Heating capacity to 613,000 Btu/hr.

Designed for continuous operation in the industrial environment . . .

with hot-dip galvanized STEELfin heating cores for long service life.

THE NEW YORK BLOWER COMPANY®

7660 QUINCY STREET—WILLOWBROOK, ILLINOIS 60527-5530 PHONE: [630] 794-5700 • FAX: [630] 794-5776 • E-MAIL: nyb@nyb.com

Visit us on the Web: http://www.nyb.com

Dependable steam Unit Heaters feature hot-dip galvanized STEELfin cores for long service life . . .

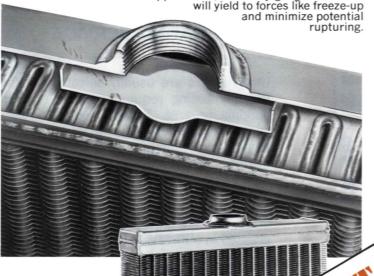
DESIGN FEATURES

- Steam pressures to 200 psi.
- Steam temperatures to 600°F.
- Heating capabilities to 613,100 Btu/hr.
- Direct drive for minimum maintenance.
- All-steel core and case construction.
- Choice of two heating surfaces...Type A for maximum heating capabilities...Type B for controlled heating in high-pressure steam applications.

INDUSTRIAL UNIT HEATERS

NOTE: The safe operation of air moving equipment is dependent on proper installation and maintenance. Improper application, installation, or maintenance can create danger to life and limb of personnel. Users and/or installers should read "Recommended Safety Practices for Air Moving Devices" as published by the Air Movement and Control Association, 30 West University Drive, Arlington Heights, Illinois 60004, which is included with the packing slips for all nyb shipments and also available upon request.

CONSTRUCTION FEATURES


- Heavy-duty steel casing ... ample internal clearances to compensate for heat expansion ... integral mounting brackets for easy installation ... venturi section die-formed for efficient airflow characteristics.
- Adjustable front louvers . . . for variable discharge angles .
- Baked machinery enamel finish . . . standard on casing and louvers.
- Welded-wire motor mount...zinc-plated heavy-gauge wire provides rigid motor support and enclosure of rotating propeller.
- High-efficiency propeller . . . designed for smooth efficient flow directly into heating surface . . . steel hub and aluminum blades for strength and durability.
- Totally enclosed motors . . . for the industrial environment . . . explosion-proof motors also available.

MATERIAL SPECIFICATIONS

Material specifications shown below apply to all sizes.

- Tube wall thickness: .060".
- Header wall thickness: 10 gauge.
- Fins: 26 gauge.
- Casings: 16 gauge.
- Louvers: 18 gauge.
- Wire guard: .250".

Cutaway view shows the steam spreader located in the supply header for even steam distribution. Also, the oval tube shape is clearly shown. Unlike thin-walled round copper tubes, the heavy-gauge oval tubes

STEELFIN DESIGN

The STEELfin heating surface was originally designed with the industrial application in mind. The all-steel core is comparable to the steam piping system in resilience and resistance to strains caused by temperature expansion and contraction [a common cause of failure with nonferrous steam coils]. The vertical tube configuration allows for positive condensate drainage and the corrosionresistant features detailed below ensure durability in the industrial environment. Wide-fin spacing and the rigidity of steel fins provide for simple cleaning methods. This primary design has stood the test of time for more than 50 years and has become the standard for space heating in some of the nation's largest manufacturing facilities.

CORROSIONARISISTANII STEELFIN CORE

CHOICE OF TWO FIN TYPES

TYPE A

Corrugated-fin surface provides maximum heating capabilities by causing a mixing airflow effect in the fin/tube channels.

TYPE B

Flat-fin surface is recommended for high-pressure steam applications where a moderate temperature rise is more desirable.

CONSTRUCTION FEATURES

Rugged, all-steel heating cores . . . resist corrosion and material build-up . . . vertical tubes allow positive condensate drainage.

Headers . . . heavy-gauge steel with all seams continuously welded.

Pipe connections . . . tank flanges continuously welded to supply and return headers.

Vertical tubes . . . continuously welded to supply and return headers . . . SAE 950 alloy steel adds strength and resists corrosion.

Fins . . . five fins per inch give large openings to minimize material build-up and facilitate cleaning . . . can be cleaned with highpressure hose or caustic solution.

Hot-dip galvanized . . . all STEELfin heating cores are hot-dip galvanized after assembly to further enhance fin/tube heat transfer characteristics . . . also provides excellent resistance to atmospheric corrosion.

Quality control . . . all cores are subjected to leakage testing before shipment.

CORRECTION FACTORS

CHART I—Type A steam ratings [see page 5]. Apply to 2 lbs. steam and 60°F. entering air ratings.

Steam	Mbh correction factors										
pressure	Entering air temperatures [°F.]										
[psi]	0°	10°	20°	30°	40°	50°	60°	70°	80°		
2	1.50	1.41	1.32	1.24	1.16	1.08	1.00	.93	.85		
5	1.55	1.46	1.37	1.29	1.21	1.13	1.05	.97	.90		
10	1.64	1.55	1.46	1.38	1.29	1.21	1.13	1.06	.98		
15	1.71	1.61	1.53	1.44	1.34	1.28	1.19	1.12	1.04		
20	1.77	1.68	1.58	1.50	1.42	1.33	1.25	1.17	1.10		
30	1.87	1.78	1.68	1.60	1.51	1.43	1.35	1.27	1.19		
60	2.09	2.00	1.90	1.81	1.73	1.64	1.56	1.47	1.39		
75	2.18	2.09	1.99	1.90	1.81	1.72	1.64	1.55	1.47		
100	2.31	2.20	2.11	2.02	1.93	1.84	1.75	1.66	1.58		
125	2.41	2.31	2.21	2.11	2.02	1.93	1.84	1.76	1.68		
150	2.50	2.40	2.30	2.20	2.11	2.02	1.93	1.84	1.76		
200	2.65	2.54	2.43	2.34	2.25	2.14	2.07	1.98	1.89		

	THE PERSON NAMED IN											
	Steam	Temperature rise correction factors										
þ	pressure	Entering air temperatures [°F.]										
	[psi]	0°	10°	20°	30°	40°	50°	60°	70°	80°		
	2	1.33	1.27	1.22	1.17	1.11	1.06	1.00	.94	.88		
	5	1.38	1.33	1.27	1.21	1.16	1.11	1.05	1.00	.93		
	10	1.45	1.40	1.35	1.29	1.24	1.19	1.13	1.07	1.02		
	15	1.51	1.46	1.42	1.36	1.31	1.24	1.19	1.14	1.08		
	20	1.56	1.52	1.46	1.41	1.36	1.30	1.25	1.19	1.14		
	30	1.65	1.61	1.55	1.51	1.46	1.40	1.35	1.29	1.24		
	60	1.86	1.81	1.75	1.71	1.66	1.61	1.56	1.50	1.45		
	75	1.93	1.89	1.84	1.79	1.74	1.69	1.64	1.58	1.53		
	100	2.04	1.99	1.95	1.89	1.85	1.79	1.75	1.69	1.64		
	125	2.13	2.09	2.04	1.99	1.94	1.89	1.84	1.79	1.74		
	150	2.21	2.17	2.12	2.07	2.03	1.98	1.93	1.87	1.83		
	200	2.34	2.30	2.24	2.20	2.16	2.10	2.07	2.02	1.97		

CHART II—Type B steam ratings [see page 6]. Apply to 30 lbs. steam and 60°F. entering air ratings.

1			N	1bh cor	rection	factor	s				
Steam pressure	Entering air temperatures [°F.]										
[psi]	0°	10°	20°	30°	40°	50°	60°	70°	80°		
2	1.11	1.04	.98	.92	.86	.80	.74	.68	.63		
5	1.15	1.08	1.02	.96	.90	.84	.78	.72	.70		
10	1.22	1.15	1.08	1.02	.96	.90	.84	.78	.73		
15	1.27	1.20	1.13	1.07	.99	.95	.89	.83	.77		
20	1.31	1.24	1.18	1.11	1.05	.99	.93	.87	.81		
30	1.39	1.32	1.25	1.19	1.12	1.06	1.00	.94	.88		
60	1.56	1.48	1.41	1.35	1.28	1.22	1.15	1.09	1.03		
75	1.62	1.55	1.48	1.41	1.34	1.28	1.21	1.15	1.09		
100	1.71	1.64	1.57	1.50	1.43	1.36	1.30	1.24	1.17		
125	1.79	1.72	1.64	1.58	1.50	1.44	1.37	1.31	1.24		
150	1.86	1.78	1.70	1.63	1.56	1.50	1.43	1.37	1.31		
200	1.97	1.88	1.81	1.74	1.67	1.59	1.54	1.47	1.41		

The second second				The same of	-4							
Steam			Temper	ature r	ise cor	rection	factors	;				
pressure		Entering air temperatures [°F.]										
[psi]	0°	10°	20°	30°	40°	50°	60°	70°	80°			
2	.98	.94	.90	.87	.82	.78	.74	.69	.65			
5	1.02	.98	.94	.90	.86	.82	.78	.74	.69			
10	1.07	1.04	1.00	.95	.92	.88	.84	.79	.75			
15	1.12	1.08	1.05	1.01	.97	.92	.88	.84	.80			
20	1.15	1.12	1.08	1.04	1.01	.96	.93	.88	.84			
30	1.22	1.19	1.15	1.12	1.08	1.04	1.00	.95	.92			
60	1.38	1.34	1.30	1.27	1.23	1.19	1.15	1.11	1.07			
75	1.43	1.40	1.36	1.32	1.29	1.25	1.21	1.17	1.13			
100	1.51	1.47	1.44	1.40	1.37	1.32	1.30	1.25	1.21			
125	1.58	1.55	1.51	1.47	1.44	1.40	1.36	1.32	1.29			
150	1.63	1.61	1.57	1.53	1.50	1.47	1.43	1.38	1.35			
200	1.73	1.70	1.67	1.63	1.61	1.56	1.54	1.48	1.45			

HOW TO SELECT UNIT HEATERS FOR STEAM HEATING SERVICE

Unit Heaters are usually selected for the Btu/hr. heating requirements in a given building or area. Several common references are generally available for estimating heating requirements . . . see separate nyb Engineering Letter.

The steam rating tables shown on pages 5 and 6 provide final temperatures based on 60°F. entering air, and Btu/hr. ratings expressed in Mbh [1000 Btu/hr.]. The factors in Charts I and II should be used to correct for alternate steam pressures or entering air temperatures.

Select heater size and quantity for reasonable temperature rise. Unnecessarily high final temperatures result in ineffective comfort heating as hot air rises away from the desired heating area.

- Position heaters for circulatory air movement within the heated area.
- Position heaters away from obstructions to allow even supply air distribution and adequate motor ventilation.
- Position heaters for good heat projection at heat-loss points.
- Position heaters for maximum effectiveness... refer to Chart III for the heatthrow capabilities based on the maximum recommended mounting height shown.

CHART III

Heat throw and mounting height							
Size A or B							
25	9'	20′					
45	10'	27'					
70	12'	42'					
105	13'	55′					
120 135 155	13' 14' 14'	45' 50' 66'					
200 240 270 300	15' 15' 15' 16'	55' 65' 70' 80'					

^{*}Floor to bottom of unit.

STEAM RATING TABLES

TYPE A UNIT HEATERS WITH CORRUGATED FINS

	Steam	Capacit entering air	y at 60°F. r temperature	CFM at 70°F.		Motor	Outlet velocity
Size	pressure [psi]	Final temp. °F.	Mbh	at 70°F.	HP	RPM	at final temp. [FPM]
A-25*	2 10 15 20	121/123/125 129/131/133 133/135/137 137/139/141	24.5 /21.1/18.3 27.6/23.9/20.7 29.1/25.1/21.8 30.6/26.5/22.9	365/306/259	4/20	1550/1300/1100	572/481/408 580/488/414 583/491/417 587/494/419
A-45*	2 10 15 20	116/119/121 123/126/129 127/130/133 130/134/136	44.7 /39.2/34.3 50.4/44.2/38.8 53.1/46.6/40.8 55.8/49.0/42.9	730/610/515	1/20	1550/1300/1100	827/694/588 837/703/596 842/707/600 847/712/604
A-70①	2 10 15 20	111/118 118/126 121/130 124/133	70.6 /53.4 79.9/60.3 84.1/63.6 88.3/66.8	1265/835	1/4	1725/1140	1057/707 1069/716 1075/720 1081/725
A-105①	2 10 15 20	110/118 116/125 119/129 122/132	106.0/80.9 119.8/91.4 126.1/96.2 132.5/101.1	1940/1282	1/4	1725/1140	1110/743 1123/753 1129/758 1134/762
A-120	2 10 15 20	118 125 129 132	120.3 136.0 143.2 150.4	1910	1/4	1140	749 759 763 768
A-135	2 10 15 20	115 122 125 128	136.3 154.0 162.1 170.3	2280	1/4	1140	889 900 906 911
A-155©	2 10 15 20	110/118 116/125 119/129 122/132	157.3/120.3 177.7/136.0 187.2/143.2 196.6/150.4	2890/1910	1/2	1725/1140	1118/749 1131/759 1137/763 1142/768
A-200	2 10 15 20	118 126 130 133	204.4 230.9 243.2 255.5	3200	1/4	1140	710 719 724 728
A-240	2 10 15 20	115 122 125 129	239.7 270.9 285.3 299.7	4000	1/4	1140	882 893 893 903
A-270	2 10 15 20	111 118 121 124	267.8 302.6 318.6 334.7	4770	1/2	1140	1045 1058 1063 1069
A-300	2 10 15 20	107 113 115 118	296.2 334.6 352.4 370.2	5800	3/4	1140	1261 1274 1281 1287

 ${\sf Mbh-1000~Btu/hr.}$ *Shaded pole motor—performance in italics available by adding 3-speed switch.

RATINGS FOR ALTERNATE STEAM PRESSURES AND ENTERING AIR TEMPERATURES

Chart I on page 4 gives correction factors for various entering air temperatures and steam pressures not listed above. The correction factors apply to the 2 psi steam ratings shown above [bold face] at 60° F. entering air.

	1. Determine factors for temperature rise and Mbh from Chart I.	1. TR=1.61. Mbh=1.64.
EXAMPLE Determine the besting	2. Subtract 60° from the final temperature for 2 psi steam above.	2. 110°-60°=50° TR.
Determine the heating capabilities of an A-105 Unit Heater at 50°F. entering air and 60 psi	3. Multiply the temperature rise factor from Step 1 by the temperature rise from Step 2, then add the actual entering air temperature to determine final temperature.	3. 1.61×50°=80° TR. 50°+80°=130° final temp.
steam pressure.	4. Multiply the Mbh for 2 psi above by the correction factor from Step 1 to determine Mbh at 50°F. entering air and 60 psi steam.	4. 106.0×1.64=173.8 Mbh.

①Performance in italics available by ordering with 2-speed motor and switch. ②Performance in italics available by ordering with 1/3 HP 2-speed motor and switch.

STEAM RATING TABLES

TYPE BUNIT HEATERS WITH FLAT FINS

6:	Steam	Capacit entering air	y at 60°F. r temperature	CFM		Motor	Outlet velocity
Size	pressure [psi]	Final temp. °F.	Mbh	at 70°F.	HP	RPM	at final temp [FPM]
B-25*	30 60 100 150	121/124/126 130/134/136 139/143/146 147/152/155	26.6 /23.4/20.5 30.6/26.9/23.6 34.6/30.4/26.7 38.1/33.5/29.3	400/335/283	1/20	1550/1300/1100	626/527/447 636/536/455 646/545/462 655/552/469
B-45*	30 60 100 150	113/117/121 121/126/130 129/134/139 136/142/147	45.4 /41.2/36.6 52.2/47.4/42.0 59.0/53.6/47.6 64.9/58.9/52.3	785/660/550	1/20	1550/1300/1100	884/749/628 896/760/638 909/771/648 919/781/656
B-70①	30 60 100 150	101/114 108/123 114/131 119/138	68.6 /59.2 78.8/68.1 89.1/77.0 98.0/84.7	1505/995	1/4	1725/1140	1237/836 1250/848 1264/860 1276/870
B-105①	30 60 100 150	104/116 110/124 117/133 123/140	99.0/83.2 113.8/95.7 128.6/108.2 141.5/119.0	2060/1360	1/4	1725/1140	1166/786 1180/798 1194/809 1205/819
B-120	30 60 100 150	117 125 134 141	120.8 138.9 157.1 172.8	1950	1/4	1140	763 775 786 796
B-135	30 60 100 150	111 118 126 133	136.2 156.7 177.1 194.8	2450	1/4	1140	949 962 975 986
B -155②	30 60 100 150	105/117 112/125 118/134 124/141	145.4/120.8 167.2/138.9 189.0/157.1 207.9/172.8	2958/1950	1/2	1725/1140	1134/763 1148/775 1162/786 1173/796
B-200	30 60 100 150	117 126 134 142	212.0 243.7 275.5 303.1	3400	1/4	1140	752 764 775 785
B-240	30 60 100 150	112 120 128 135	236.3 271.7 307.2 337.8	4150	1/4	1140	911 923 936 947
B-270	30 60 100 150	108 115 122 129	250.5 288.1 325.7 358.3	4780	1/2	1140	1041 1055 1068 1079
B-300	30 60 100 150	101 107 113 118	261.7 301.0 340.2 374.2	5850	3/4	1140	1259 1272 1286 1298

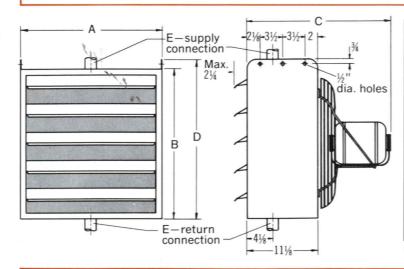

RATINGS FOR ALTERNATE-STEAM PRESSURES AND ENTERING AIR TEMPERATURES

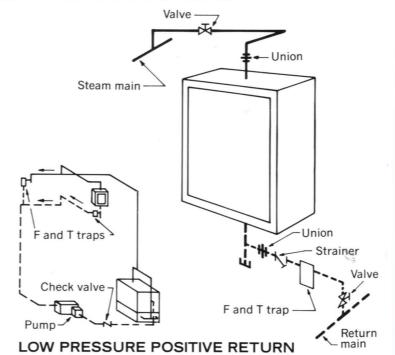
Chart II on page 4 gives correction factors for various entering air temperatures and steam pressures not listed above. The correction factors apply to the 30 psi steam ratings shown above [bold face] at 60°F. entering air.

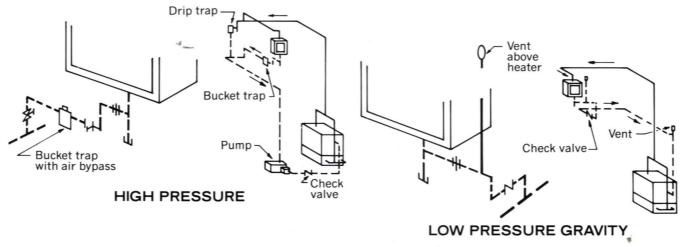
	1. Determine factors for temperature rise and Mbh from Chart II.	1. TR=1.25. Mbh=1.24.
EXAMPLE Determine the heating	2. Subtract 60° from the final temperature for 30 psi steam above.	2. 104°-60°=44° TR.
Determine the heating capabilities of a B-105 Unit Heater at 70°F. entering air and 100 psi steam pressure.	3. Multiply the temperature rise factor from Step 1 by the temperature rise from Step 2, then add the actual entering air temperature to determine final temperature.	3. 1.25×44°=55° TR. 70°+55°=125° final temp.
steam pressure.	4. Multiply the Mbh for 30 psi above by the correction factor from Step 1 to determine Mbh at 70°F. entering air and 100 psi steam.	4. 99.0×1.24=122.8 Mbh.

Mbh-1000 Btu/hr. *Shaded pole motor—performance in italics available by adding 3-speed switch. ①Performance in italics available by ordering with 2-speed motor and switch. ②Performance in italics available by ordering with $\frac{1}{3}$ HP 2-speed motor and switch.

DIMENSIONS [INCHES]

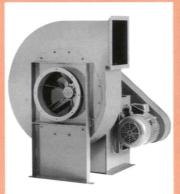
Size A or B	Α	В	C max.	D	[FPT]	Wheel dia.	Approx.* weight [lbs.]
25	12	131/4	201//8	14¾	11/2	8	65
45	13¾	135/8	201/8	151/8	11/2	10	75
70	15¾	161/8	201/2	175/8	11/2	12	115
105	181/4	191/2	201/2	21	2	14	145
120 135 155	22	231/8	241/4	245/8	2	18	180 180 200
200 240 270 300	281/4	311/4	243/8	32¾	21/2	24	305 305 305 310


^{*}Weights will vary with motor specifications. Tolerance: ±1/8"


TYPICAL STEAM PIPING CONNECTIONS

Refer to separate **nyb** Engineering Letter for information regarding typical pipe sizing and heating system hook-ups.

FOR MOST EFFICIENT TRAPPING AND CONDENSATE DRAINAGE


New York Blower Unit Heaters are guaranteed to deliver their rated Btu capacities when steam is supplied at the specific pressure with rapid and complete removal of condensation. As the STEELfin heat surface condenses steam very rapidly, particularly when starting up cold, it is important to properly install piping of ample size and traps of large capacity. Thus, to allow for intermittent trap operation and proper elimination of air and CO₂, traps should be sized from **three** to **five times** trap catalog flow capacity.

COMPLETE SELECTION OF AIR-MOVING EQUIPMENT

The New York Blower Company offers thousands of different types, models, and sizes of air-moving equipment. Contact your nyb representative for assistance in identifying the best fan for your application.

DUST/MATERIAL HANDLING

Wide range of duty available with unique fan lines capable of handling light dust to heavy material. Typical applications include dust-collection and high-pressure process along with material-conveying.

AIR-HANDLING [CENTRIFUGAL]

Designed for clean to moderately dirty gas streams. Commercial and industrial HVAC, process cooling, light material-conveying, heat removal, and dryer exhaust are just a few of the numerous sample applications

AIR-HANDLING [AXIAL]

For the ideal handling of clean to moderately dirty airstreams. Commercial and industrial HVAC, drying and cooling systems, fume extraction, and process-heat removal are typical applications.

FIBERGLASS REINFORCED PLASTIC [FRP]

Choice of performance and duty for corrosive gas streams. Applications include chemical process, wastewater treatment, laboratory hood exhaust. and tank aeration.

CUSTOM PRODUCTS

Designed for unique applications. Variety of configurations, temperatures, flows, and pressures. Wide range of modifications and accessories are available to meet the most

The best fans still keep coming from New York Blower!

demanding

specifications.

ROOF VENTILATORS

Including both hooded and upblast ventilators, propeller fans, and centrifugal roof exhausters. These units are ideal for industrial, commercial. and institutional applications.

HEATING **PRODUCTS**

Industrial-duty steam unit heaters with steam heating coils are available for facility heating and process-heat transfer.

COMPONENTS

Plug fans, plenum fans, wheels, inlet cones, and housings for a wide variety of OEM applications. Process/fan components are used in air-handling units, ovens, dryers. freezer tunnels, and filtration systems.